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HEAT TRANSFER IN THE NEIGHBORHOOD OF THE
BLUNT LEADING EDGE OF A CYLINDRICAIL WING

DURING SLIP

A. A. Yarkho

ABSTRACT 93 673

The work applies two-dimensional solution of the
heat transfer problem to a three-dimensional case with
gas flow under stationary conditions and constant laminar
flow, Prandtl number, iggéiggé heat and wing surface

temperature.

The problem of heat transfer in the neighborhood of the leading criti- [ggf
cal point in a two-dimensional gas flow has been solved by A. Ye. Kalikhman
(ref. 1).

The present work generalizes this solution for the three-dimensional case
involving the flow of gas around a cylindrical wing of infinite length during
slip under stationary conditions. It is assumed that the flow in the boundary
layer is laminar and that the wing surface temperature, the Prandtl number and
specific heat are constant. An exact solution of the problem, when the Prandtl

number is equal to one, has been obtained numerically by Ye. Reshotko (ref. 2).

* Numbers given in margin indicate pagination in original foreign text.
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Let us consider the stationary gas flow around a wing of infinite length.

We use the following symbols:

X, ¥, 2

(¢}

P

- coordinates of points in the region of the boundary layer measured

respectively along the arc of the airfoil from the leading edge in
the plane perpendicular to the generatrixes of the wing, along the
normal to the airfoil and along the span parallel to the generatrixes
(fig. l)’

velocity conponents along the x, y, z, axes,

components along the x, z, axes of velocity Go at the external
boundary of the boundary layer,

pressure,

density in the boundary layer,

density at the external boundary of the boundary layer,
temperature in the boundary layer,

temperature at the external boundary of the boundary layer,
adiabatic retardation temperature,

specific (mass) heat at constant pressure,

dynamic viscosity coefficient,

coefficient of heat transfer

Prandtl number

gas constant

mechanical equivalent of heat

In the selected system of coordinates all the flow characteristics in the

boundary layer u, v, W, p, w, and T depend only on x and y, while at the ex-

ternal boundary of the boundary layer they depend only on x*,

*We note that W=const.
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Figure 1

Consequently the system of equations for the laminar boundary layer of Z2§
gas in the case of stationary flow when the Prandtl number and the specific heat

are constant, may be written in the following form:
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We shall solve the problem Eﬁééﬁag the following boundary conditfbﬁs:

1) u=v=w=0, =T, = const at the surface of the wing (y=0),

2) u=Uo(x), w=W=const, T=T (x) at the external boundary of the boundary
layer (y = o).

Tt is assumed that the velocity distribution at the external boundary of
the boundary layer Uo(x) is known in the neighborhood of the leading edge of

the Wing*: U0 = Bx, where B is a constant.

*This means that p(x) and T, (x) are also known because according to the Bernoulli

. dU
equation ,___,__ aljo
dx. "'U

and according to the law of energy conservation ot

j*1;4u_1:;!f:=;ﬂ§n»




The wvariation in the dynamic coefficient of viscosity as a function of

temperature, according to Chapmen and Rubezin (ref. 3) is given by the expression:

1 e
I T T\ 5 T, T
L e, cg=(T2\T Tt e (7)

where T:L is the temperature of incomplete adiabatic retardation at the external
boundary of the boundary layer(because only the velocity component UO
decreases to zero),
¥ is the dynamic viscosity coefficient at the temperature Tié,
is a constant which is approximately equal to 1190 for air.
Since UO is small near the leading edge, in the future we shall:
dp

1) neglect the terms =22

2
and%i(ég) ,in the energy equation (4); these terms
Jjepdx Jep a

oy
express the work performed by the pressure forces and partially the dissipation,

2) assume that T T*‘ and P p is the gas density at the external

o2 (p02
boundary of the boundary layer during incomplete adiabatic retardation due to the
fact that only the velocity component UO decreases to zero).

The last two assumptions are analogous to those made in the work of Kalikhman
(ref. 1).

2. To solve the problem we introduce a new variable'gain place of y as [2h

proposed by A. A. Dorodnitsyn (ref. L):

j—e.—dy,
b2
Then with the assumptions made above and with the selected law governing the

variation in the dynamic coefficient of viscosity as a function of temperature as

expressed by equation (7), the system of equations (l) - (4) will have the form:
w  wom_w  dUs | SO |

u&+vh-90 -+ %fl | (8)
ow ~dw.—-<)1w - ‘.
u5;+09"3— ‘?’12’ | (9)
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where .

Poo :
v=~wmvmu—+v_n
P2 dy

The boundary conditions for the problem under consideration will have the
form:

1) u=v=w=0, T=Tw,= const when n = 0,

2) u=Uo(x) = Bx, w=W=const, T=TO=T;; when | = o .

If we let %9 = 1*¥ in equation (8) the system of equations (8) - (10) may be
solved independéntly of (11). The field of velocities in the coordinates x, T,
obtained from the solution of system (8)-(10) will be the same as in the well-

known analogous problem for the incompressible fluid (ref. 5):

u=Btf’ (), (12)
T=—VWBsO) (13)
w=Wg (), | (1%)

where C—'q]/ iR _while the functioms f({) and g([) are determined from the

following equations and boundary conditions:

Rl WA i 4 L (15)
AFO)=/!(0)=0, f'(oo)——l (16)
- &'+ fe' =0, (17)
£(0)=0, g(oo)==1. (18)

The primes indicate derivatives with respect to (.

* This simplification which pertains to the determination of the field of velocities

and which does not affect the field of temperature too much, was used in (ref. 1).



The result of the numerical solution of equations (15) with boundary condi-
tions (16) may be found, for example, in (ref. 5). This reference also presents
a table for functions g({) and g'(g).

If we transform from the variable 1) to the variable { in equation (11) /25

and substitute u,v,w into it according to expressions (12), (13) and (1L), we

obtain:
1 0T 0T _ 1 a’r 1
fx,ax h & Pr Jc,T' g’ 3 (19)
where -T _T— v. C PR | ‘
T o ‘

The boundary conditions will be:

r—al

= const when ([ =
w

H\

1)
2)

Equation (19) is a linear nonhomogeneous differential equation with partial

when g -+ ™

derivati“'es of the second order and with nonhomogeneous boundary conditions.

Tts solution is obtained guite easily by separating the variables:
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3. The heat flux from the gas to the wing surface is equal to:

3 (9T _, Py (9T .\
=R G Tl i (6 (21)
Differentiating equality (20) with respect to g and letting { = O, we obtain:
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Expression (22) for Prandtl numbers from 0.6 to 1 may be approximated /26

with a maximum error of 1 percent in the following manner:

A7)y =OSTO P (1 — T} +0.285 PR | (23)
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where )
M sin?y

2

"= — _—l‘—f——— R
1+"_'2‘__~M.C°"l h

Mao is the M number of the unperturbed flow h

X is the angle of slip of the wing, x="‘2
- c’

-

4, Tet us compare the solution which we have obtained with the exact one
proposed by Reshotko (ref. 2) for the case Pr = 1.

When Pr = 1 expression (25) will have the form:

'q.go.smx,,‘/% T..(l—-—;;'i) \ (26)

According to the exact equation

N — . ’ \

\
g =Ko EE’TZQ(I--EZ),ﬁ
i

Vo Teo
where
=139
The values of K were obtained by Reshotko (ref. 2) by a combined /27
numerical solution of two ordinary differential equations with ;E = 2-1-0 and
o

with different w.

For the case of the greatest practical interest 01(-£:<:11the error in the
calculation of the heat flux from the gas to the surface of the body by means of
the approximate equation (26) does not exceed 16 percent if @ < 2, i.e., for

example, when M; =5x < 650 or when M; =4 x < 700.
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